Tacrolimus administration in combination with dexamethasone reduces neutralizing antibody formation against AAV vector and increases transgene expression in cynomolgus macaques

1Daisy Huynh, 2Omar Francoee, 3Teresa Wright, 4Jenn Newman, 5Jacinthe Gingras, 6Pablo Morales, 7Amber Williams, 8Julie Jordan, 9MiJeong Kim

1Homology Medicines, Inc., 1 Patriots Park, Bedford MA 01730; 2The Mannheimer Foundation Inc., 20255 SW 369th, Homestead, FL 33034

Background
- Gene therapy using recombinant adeno-associated virus (rAAV) vectors has been successful in treating a wide range of human diseases.
- Eleven AAV hematopoietic stem cell-derived AAV (AAVHSC) belonging to Clade F have been discovered and fully characterized. Each AAVHSC has unique amino acid residues on the capsid proteins VP1, 2, or 3.
- Patients treated with rAAV often experience elevated ALT/AST, which is believed to be immune-mediated. Patients may also experience immune responses such as anti-AAV neutralizing antibody (nAb) formation and B & T-cell activation. These responses can lead to loss of therapeutic transgene expression over time and hamper the potential for re-dosing.
- Corticosteroid treatment regimens have been widely used to manage elevated ALT/AST levels and immune responses in rAAV-treated patients.
- However, due to the non-specific mechanism of action of corticosteroids, patients could experience adverse effects including hypertension, hyperglycemia, osteoporosis, and neuropsychiatric symptoms, such as insomnia and mood disturbance.
- The addition of drugs with more specific targeting have been introduced in AAV-based gene therapy clinical trials to improve the immunosuppressive regimen and potentially reduce adverse effects in patients. For example:
 - Mannalian target of rapamycin (mTOR) inhibitor sirolimus targets mainly B cells and T cells
 - Calcineurin inhibitor tacrolimus targets mainly T cells
 - Here, we investigated the effects of immunosuppressive regimens (different combinations of dexamethasone and/or tacrolimus) on liver and immune responses in AAVHSC17-treated cynomolgus macaques.

Mechanism of Action of Immunosuppressive Drugs

- Tacrolimus (Tac): Calcineurin inhibitor (T cell specific)
- Dexamethasone (Dex): Glucocorticoid receptor ligand
- Rituximab (Rit): CD20+ B cell inhibitor
- Sirolimus (Sil): mTOR inhibitor
- APL-9: Complement 3 inhibitor
- Imlifidase (IdeS): IgG cleaving cysteine protease

Study Design

Results

- **Dexamethasone & Tacrolimus Regimen Reduced nAb Formation**
 - Each NHP developed nAbs, detectable as early as Day 14 (data not shown).
 - The graph on the left shows nAb titer of the terminal serum sample at Day 28.
 - Dexamethasone & tacrolimus combination regimen reduced nAb formation by 4.8-fold, relative to the no-immunosuppressive regimen group.

Results

- **Dexamethasone & Tacrolimus Regimen Increased Gene Expression**
 - Dexamethasone & tacrolimus combination regimen increased PAH mRNA expression by 2-fold, compared to no immunosuppressive drug treatment group, greater than the slight increase observed in VG.

Summary

We demonstrated that modulating T-cell activity using tacrolimus together with dexamethasone is important in reducing B- and T-cell activity, nAb formation, and maintaining transgene expression following rAAV administration in NHPs. These results support the use of a dexamethasone & tacrolimus immunosuppressive regimen in our ongoing gene editing clinical trial with HMI-103 (pheEDIT) in adults with phenylketonuria (NCT05222178) and gene therapy trial with HM-203 (juMPStart) in adults with Hunter syndrome (MPS II) (NCT05238324).